GEANT-3.21 Simulation of the Balbekov Square Cooling Ring

Zafar Usubov

Ring Cooler/Emittance Exchange group meeting.

Tuesday, April 1, 2003

Initial beam conditions

1)
$$E_{tot} = 250 \, MeV$$

2)
$$\sigma_{E_{tot}} = 18 \, MeV$$

3)
$$\sigma_{P_x} = \sigma_{P_y} = 32 \text{ MeV}$$

4)
$$\sigma_x = \sigma_y = 4 cm$$

5)
$$\sigma_z = 8 \ cm$$

energy-momentum correlation according V.B. MUC-NOTE-COOL_THEORY-246

and few parameters

6)
$$f_{RF} = 205.900$$

7)
$$G = 15 \, MV/m$$

synchronous phase for accel.= 30^{0}

Figure 1: Energy deposition at LH_2 wedge absorber.

Tetra Solenoid Focused Ring

Figure 2: Emittances, transmision and merit factor. Solid - without aluminium window, dashed - with window.

Tetra Solenoid Focused Ring

Figure 3: Comparison of berilium wedge absorber with LiH one.

Tetra Solenoid Focused Ring

Figure 4: Comparison of aluminium and carbon (dashed) window results.

Kirk-Garren Dipole Ring

Figure 6: Top view of a dipole cooling ring. $B_y = -1.63574, E_m = .25\,GeV.$